100 Teorema Terkeren

Sudah mulai ribuan tahun yang lalu manusia mencari hal-hal yang bisa dihimpun sesuai kategorinya untuk menjadi “100 hal ter-“ baik atau buruk dalam banyak bidang. Baik dalam dunia perfilman maupun ilmu pengetahuan. Mulai dari orang yang tertinggi, orang yang terkaya, dan banyak lagi lainnya.

Sudah kebiasaan manusia untuk membuat pola dan mendaftar segala sesuatu dengan maksud untuk memberikan penghargaan bagi mereka yang telah memberikan karya terbaik. Disegala bidang pasti ada yang terbaik di bidang masing-masing.

Tidak mau ketinggalan, para Matematikawan dunia, pada konferensi Matematika pada bulan Juli tahun 1999, Paul dan Jack Abad mempresentasikan daftar dari 100 teorema yang terkeren “The Hundred Greatest Theorems.” Mereka me-rankingnya berdasarkan kriteria-kriteria berikut ini : “Posisi teorema bergantung pada literature, kualitas dari pembuktiannya, dan hasil akhir yang tidak disangka-sangka”- “the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result.Waw, sungguh luar biasa. Bagi mereka, itulah sisi keindahan Matematika.

Daftar berikut ini pastinya bisa berubah-ubah layaknya penilaian pada dunia perfileman dan buku. Akan tetapi semua teorema yang berada di daftar berikut ini merupakan teorema-teorema yang benar-benar besar kegunaannya. Berikut ini teorema-teorema tersebut.

100 Teorema Terkeren untuk dibuktikan

1 The Irrationality of the square Root of 2 Pythagoras and his school 500 B.C
2 Fundamental Theorem of Algebra Karl Frederich Gauss 1799
3 The Denumerability of the Rational Numbers Georg Cantor 1867
4 Pythagorean Theorem Pythagoras and his School 500 B.C
5 Prime Number Theorem Jacques Hadamard and Charles-Jean de la Vallee Poussin (separately) 1896
6 Godel’s Incompleteness Theorem Kurl Godel 1931
7 Law of Quadratic Reciprocity Karl Frederich Gauss 1801
8 The Impossibility of Trisecting the Angle and Doubling the Cube Pierre Wantzel 1837
9 The Area of a Circle Archimedes 225 B.C
10 Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) Leonhad Euler

Pierre de Fermat

1760

(1640)

11 The Infinitude of Primes Euclid 300 B.C
12 The Independence of the Parallel Postulate Karl Frederich Gauss, Janos Bolyai Nikolai Lobachevsky, G.F. Bernhard Riemann collectively 1870-1880
13 Polyhedron Formula Leonhard Euler 1751
14 Euler’s Summation of (The Basel Problem) Leonhard Euler 1734
15 Fundamental Theorem of Integral Calculus Gottfried Wilhel, von Leibniz 1686
16 Insolvability of General Higher Degree Equations Niels Henrik Abel 1824
17 DeMoivre’s Theorem Abraham DeMoivre 1730
18 Liouville’s Theorem and the Construction of Trancendental Numbers Joseph Liouville 1844
19 Four Squares Theorem Joseph-Louis Lagrange
20 Primes that Equal to the Sum of Two Squares (Genus theorem)
21 Green’s Theorem George Green 1828
22 The Non-Denumerability of the Continuum George Cantor 1874
23 Formula for Pythagorean Triples Euclid 300 B.C
24 The Undecidability of the Continuum Hypothesis Paul Cohen 1963
25 Schroeder-Bernstein Theorem
26 Leibnitz’s Series for Pi Gottfried Wilhel, von Leibniz 1674
27 Sum of The Angles of a Triangle Euclid 300 B.C
28 Pascal’s Hexagon Theorem Blaise Pascal 1640
29 Feuerbach’s Theorem Karl Wilhelm Feuerbach 1822
30 The Ballot Problem J.L.F. Bertrand 1887
31 Ramsey’s Theorem F.P. Ramsey 1930
32 The Four Color Problem Kenneth Appel and Wolfgang Haken 1976
33 Fermat’s Last Theorem Andrew Wiles 1993
34 Divergence of the Harmonic Series Nicole Oresme 1350
35 Taylor’s Theorem Brook Taylor 1715
36 Brouwer Fixed Point Theorem L.E.J. Brouwer 1910
37 The Solution of a Cubic Scipione Del Ferro 1500
38 Arithmetic Mean/Geometric Mean (Poof by Backward Induction)

(Polya Proof)

Augustin-Louis Cauchy
39 Solution to Pell’s Equation Leonhard Euler 1759
40 Minkowski’s Fundamental Theorem Hermann Minkowski 1896
41 Puiseux’s Theorem Victor Puiseux (based on a discovery of Isaac Newtown of 1671) 1850
42 Sum of the Reciprocals of The Triangular Numbers Gottfried Wilhelm von Leibniz 1672
43 The Isoperimetric Theorem Jacob Steiner 1838
44 The Binomial Theorem Isaac Newton 1665
45 The Partition Theorem Leonhard Euler 1740
46 The Solution of General Quartic Equation Lodovico Ferrari 1545
47 The Central Limit Theorem
48 Dirichlet’s Theorem Peter Lejune Dirichlet 1837
49 The Cayley-Hamilton Theorem Arthur Cayley 1858
50 The Number of Platonic Solids Theaetetus 400 B.C
51 Wilson’s Theorem Joseph-Louis Lagrange 1773
52 The Number of Subsets of a Set
53 Pi is Trancendental Ferdinand Lindemann 1882
54 Konigsbergs Bridges Problem Leonhard Euler 1736
55 Product of Segments of Chords Euclid 300 B.C
56 The Hermite-Lindemann Transcendence Theorem Ferdinan Lindemann 1882
57 Heron’s Formula Heron of Alexandria 75
58 Formula for the Number of Combinations
59 The Laws of Large Number
60 Bezout’s Lemma Etienne Bezout
61 Theorem of Ceva Giovanni Ceva 1678
62 Fair Games Theorem
63 Cantor’s Theorem George Cantor 1891
64 L’Hopital’s Rule John Bernouli 1969
65 Isosceles triangle Theorem Euclid 300 B.C
66 Sum of a Geometric Series Archimedes 260 B.C
67 is Transcendental Charles Hermite 1873
68 Sum of an Arithmetic series Babylonians 1700 B.C
69 Greatest Common Divisor Algorithm Euclid 300 B.C
70 The Perfect number Theorem Euclid 300 B.C
71 Order of a Subgroup Joseph-Louis Lagrange 1802
72 Sylow’s theorem Ludwig Sylow 1870
73 Ascending or Descending Sequences Paul Erdos and G. Szekeres 1935
74 The Principle of Mathematical Induction Levi ben Gerson 1321
75 The Mean value Theorem Augustine-Louis Cauchy 1823
76 Fourier Series Joseph Fourier 1811
77 Sum of -th powers Jakob Bernouilli 1713
78 The Cauchy –Szhwarz Inequality Augustine-Louis Cauchy 1814
79 The Intermediate value Theorem Augustine-Louis Cauchy 1821
80 The Fundamental Theorem of Arithmetic Euclid 300 B.C
81 Divergence of the Prime Reciprocal Series Leonhard Euler 1734
82 Dissection of Cubes (J.E. Littlewood’s elegant proof) .L. Brooks 1940
83 The Friendship Theorem Paul Erdos, Alfred Renyi, Vera Sos 1966
84 Morley’s Theorem Frank Morley 1899
85 Divisibility by 3 Rule
86 Lebesgue Measure and Integration Henri Lebesgue 1902
87 Desargues’s Theorem Gerard Desargues 1650
88 Derangements Formula
89 The Factor and Remainder Theorems
90 Stirling’s Formula James Stirling 1730
91 The triangle Inequality
92 Pick’s Theorem George Pick 1899
93 The Birthday Problem
94 The Law of Cosines Francois Viete 1579
95 Ptolemy’s theorem Ptolemy
96 Principle of Inclusion/Exclusion
97 Cramer’s Rule Gabriel Cramer 1750
98 Bertrand’s Postulate J.L.F. Bertrand 1860
99 Buffon Needle Problem Comte de Buffon 1733
100 Descartes Rule of Signs Rene Descartes 1637

Mungkin jika kita menguasai semua pembuktian dari teorema-teorema di atas ini, kita akan lebih bisa mencintai Matematika. Karena keindahan mereka berada pada pembuktiannya. Kita semua tahu, keindahan identik dengan hal yang sulit. Sulit dicerna, sulit dibuat, sulit ditiru, sulit untuk dilakukan. Akan tetapi, ingat, sulit tidak berarti tidak mungkin.🙂

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s